

web

Motivations

- Autoregressive generative models can estimate complex data distributions such as language, audio and images.
- Most existing methods either operate on discrete data distribution or discretize continuous data into several bins and use categorical distributions over the bins to approximate the continuous data distribution.
- Such approximation cannot express sharp changes in density without using significantly more bins, making it parameter inefficient.

Adaptive Discretization

AdaCat is a mixture of k non-overlapping truncated uniforms ($w, h \in \mathbb{R}^k$)

$$\operatorname{AdaCat}_k(w,h) : f_{w,h,k}(x) = \sum_{i=1}^{n}$$

$$w$$
 is fixed: Uniform discretization

- If h is fixed: Quantile regression
- 1D Illustrative Example (k = 6)

Uniform Discretization

Adaptive Discretization

2D Toy Density Estimation (k = 12)

AdaCat: Adaptive Categorical Discretization for Autoregressive Models

Qiyang Li, Ajay Jain, Pieter Abbeel University of California, Berkeley

Overcoming Non-Smoothness

Empirical Negative Log-likelihood Objective

$$\hat{\mathcal{L}}_{\mathsf{orig}}(\theta) = \frac{1}{n} \sum_{d=1}^{n} \sum_{t=1}^{m} \log p_{\theta}(x_d^t | x_d^t)$$

where w^t , $h^t = nn(x_d^{< t})$ are the predicted parameters of the AdaCat distribution.

- The gradient of $\hat{\mathcal{L}}_{\text{orig}}$ with respect to the w^t, h^t is ill-defined at the bin boundaries.

Smooth Objective

$$\hat{\mathcal{L}}_{\text{smooth}} = \frac{1}{n} \sum_{d=1}^{n} \sum_{t=1}^{m} \left[\int_{\tilde{x}} \zeta(\tilde{x} | \boldsymbol{x}_{d}^{t}) \log p_{\theta}(\tilde{x} | \boldsymbol{x}_{d}^{< t}) d\tilde{x} \right]$$

where $\zeta(\tilde{x}|x_d^t)$ is a smoothing distribution.

The inner integral can be computed as follows:

$$\int_{\tilde{x}} \zeta(\tilde{x}) \log f_{w,h,k}(\tilde{x}) d\tilde{x} = \sum_{j=1}^{k} \left[(F(c_j + w_j) - F(c_j)) (\log h_j - \log w_j) \right]$$

where F(x) is the cumulative density function (CDF) of $\xi(x)$.

- The gradient is well-defined everywhere and $\mathcal{L}_{\text{smooth}}$ prevents bin collapse (blue below).

Optimization Dynamics of Original vs. Smooth Objective

$|x_d^{<t}) = \frac{1}{n} \sum_{d=1}^{n} \sum_{t=1}^{m} \log f_{w^t, h^t, k}(x_d^t)$

• Therefore, $\nabla_{\theta} \hat{\mathcal{L}}_{\text{orig}}$ might be biased. Optimizing $\hat{\mathcal{L}}_{\text{orig}}$ can lead to bin collapse (red below).

• The integral can be easily computed for ζ 's when their CDFs are simple (uniform and Gaussian).

Empirical Results

MNIST Density Estimation

Paramete

512 256 216

180

 \times : training diverged

Offline RL with Model-based Planning in D4RL (Trajectory Transformer [1])

HalfCh Hoppe Walker

See our paper for additional results on tabular and audio data.

Try it out on PyTorch! - pip install adacat

```
from adacat import Adacat
params = torch.nn.Parameter(torch.randn(10 * 2)) # AdaCat with 10 bins
optim = torch.optim.Adam([params], lr=0.01)
```

```
for _ in range(n_its):
   dist = Adacat(params) # PyTorch distribution
   xs = sample_batch()  # Sample from data distribution
    loss = -dist.log_prob(xs, smooth_coeff=0.001).mean()
   optim.zero_grad()
    loss.backward()
                          # Optimize the smooth loss
   optim.step()
```

References

- in Neural Information Processing Systems, 2021.

ers	Uniform	Adaptive Quantile	DMoL [2]	AdaCat
2	N/A	×	0.761	0.561
5	0.561	×	0.698	0.573
5	0.838	×	0.704	0.615
)	1.061	×	0.684	0.629
2	1.299	×	0.776	0.612
}	1.490	×	0.700	0.608
	2.453	×	0.720	0.695
	3.392	1.276	0.715	0.793
t	0.561	1.276	0.715	0.561

Dataset	Uniform	Quantile	AdaCat
neetah-Medium	44.0 ± 0.31	$46.9{\scriptstyle~\pm 0.4}$	$47.8{\scriptstyle~\pm 0.22}$
r-Medium	67.4 ± 2.9	61.1 ± 3.6	$69.2 \scriptstyle \pm 4.5 $
r2d-Medium	$81.3{\scriptstyle~\pm 2.1}$	$79.0{\scriptstyle~\pm2.8}$	79.3 ± 0.8

[1] M. Janner, Q. Li, and S. Levine. Offline reinforcement learning as one big sequence modeling problem. In Advances

[2] T. Salimans, A. Karpathy, X. Chen, and D. P. Kingma. Pixelcnn++: Improving the pixelcnn with discretized logistic mixture likelihood and other modifications. arXiv preprint arXiv:1701.05517, 2017.