
ISCA 2019 Workshop on Machine Learning for Systems

Learning automatic schedulers with projective
reparameterization

Ajay Jain∗
UC Berkeley

ajayj@berkeley.edu

Saman Amarasinghe
Massachusetts Institute of Technology

saman@csail.mit.edu

ABSTRACT
Neural networks have proved effective in unconstrained re-
gression and classification problems. Further, commonly
used reparameterizations admit learning under certain fixed
constraints – e.g. bounds or normalization schemes. Such
neural network architectures resort to a small number of
differentiable reparameterizations and transformations to ex-
press constraints on the output of the parametric model, such
as sigmoid or softmax operators. In this work, we propose
a generalized differentiable operator, EPOCS, that enforces
a large class of dynamic constraints on the output of a neu-
ral network with an alternating projection procedure. Such
constraints can vary between inputs and are applied during
end-to-end training. In particular, EPOCS allows super-
vised learning in highly-constrained code optimization and
scheduling problems. We apply EPOCS to automatic in-
struction scheduling subject to data-dependent partial orders
over the instructions, and train a listwise scheduler to imi-
tate ground-truth schedules end-to-end. Applying dynamic
constraints during training with the EPOCS operator yields a
4.1% higher accuracy and a significantly reduces data depen-
dency violations.

1. INTRODUCTION
There is great interest in systems that automatically select

efficient schedules to execute user-specified operations. In the
compiler literature, automatic assembly instruction schedul-
ing has been formulated through Integer Linear Programming,
allowing optimal though costly scheduling through the use of
commercial solvers [1, 2]. However, in practice, compilers
resort to hand-tuned greedy algorithms, including the popular
list scheduling algorithm [3]. Reinforcement learning [4] and
supervised learning [5, 6] approaches have been proposed for
instruction scheduling, though these schedulers are greedy,
resulting in an optimality gap.

Can we learn auto-schedulers that approach the final per-
formance of black-box optimizers, brute-force search, or
expertly designed heuristics, without the computational ex-
pense? Learning approaches may yield fast and near-optimal
schedulers, particularly as large datasets of ground truth
schedules can be generated offline. Still, training neural
schedulers is challenging due to (1) the discrete and combi-

∗Work completed while the author was at MIT.

natorial nature of schedules, and (2) the highly constrained
space of feasible schedules – the produced schedule must not
alter the functionality of the program.

To allow schedulers to be trained via end-to-end gradient
based optimization under input-dependent constraints, we in-
troduce the notion of projective reparameterization, a class of
operators that differentiably constrain the output of a neural
network to a convex set of feasible solutions. Such repa-
rameterization is particularly useful for learning approaches
in systems, as it provides correctness by construction. As
an application, we frame local instruction scheduling as a
constrained optimization problem, which can be relaxed and
amortized via supervised learning of a listwise neural sched-
uler. In contrast to prior reinforcement learning work [4], our
instruction scheduling network predicts a schedule for entire
basic blocks rather than parameterize a greedy policy, with
efficient end-to-end learning.

Our primary contributions are as follows:

• We formalize and relax the order selection auto-scheduling
problem as a constrained optimization (Section 2).

• We develop and analyze an end-to-end differentiable
projection onto convex set (EPOCS) operator that en-
forces linear constraints on a neural network’s output.
We then specialize the operator to partial order con-
straints (POPOCS, Section 3).

• Finally, we train an automatic instruction scheduler to
imitate schedules produced by the GCC compiler and
demonstrate accuracy and correctness benefits from
dynamic constraints (Section 4).

2. SCHEDULING AS OPTIMIZATION
Consider the class of auto-scheduling problems where a

cost minimizing order of execution is selected. That is, π ∈
Pn must be selected over a partially ordered set of jobs
(X = {x1, ...,xn},≺), where Pn denotes the permutahedron
on n objects. For cost model C, this auto-scheduling task is
expressible as problem (1).

minimize
π∈Pn

C(xπ(1), ...,xπ(n)) (1)

subject to xπ(i) � xπ(j) ∀i < j (2)

⇐⇒ π
−1(a)< π

−1(b) ∀xa ≺ xb (3)

1

The feasible solutions to the above problem provide the par-
tial order preserving total orders over jobs, P≺

n . For instance,
an exhaustive instruction scheduler could minimize (1) with
respect to a model of a processor such as IACA [7], the LLVM
Machine Code Analyzer [8] and Ithemal [9], or minimize
empirically measured latency. Such problem also general-
izes matching problems with optional constraints such as
packet switching. However, due to the combinatorial nature
of the constraint π ∈Pn, where |Pn| grows factorially with
n, the optimization is intractable for moderate n and general
C. Stochastic search is expensive though feasible [10], and
local search or greedy heuristics are used in practice.

As an alternative, we develop a constrained, continuous
optimization framework to approximate the problem. Con-
sider parameterization π(i) = 〈Pi,v〉 in terms of permutation
matrix P and index vector v = [n]. As P−1 = PT (double
stochasticity of permutation matrices), constraint (3) is satis-
fied if and only if

〈PT
a ,v〉< 〈PT

b ,v〉 ∀xa ≺ xb (4)

Note that (4) is equivalent to (8).
A nonnegative matrix P is doubly stochastic if constraints

(6) and (7) hold. Further, if P is binary, then it is also a per-
mutation matrix. Hence, the integer solutions to constraints
(6-9) have a bijective mapping with P≺

n .
To admit optimization, we desire a surrogate cost on P ∈

B≺n . For example, [9] defines a cost function in terms of
continuous embeddings of instructions Φ(x1, ...,xn). Via left
multiplication of P to permute the embeddings, we arrive at
objective (5).

minimize
P∈Rn×n

f (PΦ(x1, ...,xn)) (5)

subject to
n

∑
i=1

Pi j = 1 ∀ j ∈ {1, ...,n} (6)

n

∑
j=1

Pi j = 1 ∀i ∈ {1, ...,n} (7)

n

∑
j=1

jP jb−
n

∑
j=1

jP ja ≥ 1 if xa ≺ xb (8)

Pi j ∈ {0,1} (relaxed: Pi j ≥ 0) (9)

As our relaxation, the integrality constraint (9) is replaced
with a nonnegativity constraint. Let P ∈Bn, the Birkhoff
polytope of doubly stochastic matrices. By the Birkhoff-von
Neumann lemma, Bn is the convex hull of the permutation
matrices [11], motivating the relaxation. This relaxation
is also used in prior learning to rank [12, 13, 14, 15] and
structure learning [16] work, albeit without a partial order.
Together, (6-8) and Pi j ≥ 0 define a partial order preserving
doubly stochastic matrix polytope B≺n .

2.1 Conducting the optimization
In the optimization literature, we have well-developed tools

to impose linear constraints on parameters. For instance, a
gradient-based Augmented Lagrangian solver can minimize
(5) (c.f. [17] with additional slack variables). However, the
cost model may not be well-defined under the relaxation,
where job embeddings are interpolated by multiplication with

P ∈B≺n . Further, learning a cost model f (·) requires facto-
rially many permutations to effectively capture job ordering
effects. Instead of learning a cost model and optimizing
with respect to it within B≺n , in Section 3, we will develop a
learned scheduler that predicts permutations in the feasible
set.

2.2 Correcting the relaxation
For both an optimization and learning approach, to cor-

rect the Birkhoff relaxation after optimization, we apply the
matching operator as used in [15]. The matching operator
determines the most similar permutation matrix to the relaxed
solution, measured by Hadamard product 〈·, ·〉H :

M(A) = argmax
P∈ext(Bn)

〈A,P〉H (10)

A matching can be computed in O(n3) time via the Hungarian
algorithm [18, 19], and is equivalent to computing a maxi-
mum weight bipartite matching with weight matrix given by
the relaxed solution.

3. PROJECTIVE REPARAMETERIZATION
FOR LEARNED SCHEDULERS

3.1 Motivation for a learned scheduler
Due to challenges discussed in Section 2.1 for learning a

cost model under a relaxation, we instead propose learned
schedulers that imitate a ground-truth dataset of optimal or
near-optimal schedules. It is possible to create such a dataset
with an enumerative, stochastic, or branch-and-bound strat-
egy e.g. via ILP solving [1, 2] or auto-tuning. Alternatively,
this dataset can be collected from hand-optimized schedules.
By training a neural scheduler to predict these optimal sched-
ules, schedules for unseen examples can be derived quickly,
thereby amortizing the cost of producing the dataset. We
hypothesize that a learned scheduler will produce lower cost
schedules than those predicted by hand-written list schedul-
ing heuristics, especially as it can parameterize a non-greedy
strategy.

3.2 Enforcing constraints via alternating
projections

During forward pass inference in a neural network, there
are limited tools for imposing constraints. Instead, practition-
ers use reparameterizations such as the sigmoid activation
and exponentiation to map from unconstrained values to a
subspace in a differentiable manner. Additional differentiable
transformations for fixed constraints include rectified linear
unit and softmax normalization. Further, optimization pro-
cedures including quadratic programs have been integrated
into neural network architectures [20, 21]. In fact, the ReLU,
sigmoid, and softmax functions are themselves solutions to
optimization problems [21]. Towards a practical unification
of the optimization and reparameterization perspectives, we
propose a differentiable optimization procedure to impose
linear constraints on the output of a network. Objective (11)
specifies a minimization problem where an unconstrained
prediction x is mapped into a feasible set defined by linear
constraints. This is solvable via a projection onto convex set

2

Instruction (job)
embedding LSTM

add rsp, 0x08
mov rsi, rax
mov edi, 0x14
pop rsp
pop rbp

Projective
reparameterization

Unnormalized marginal
prediction MLP

Matching operator
(inference only)

Figure 1: POCSNET network architecture for auto-scheduling as permutation selection. A set of jobs are each embed-
ded into a continuous vector space via an LSTM. From such embeddings, the network predicts unnormalized marginal
distributions over job issue times p̃(xi→ j). Conditioned on the known partial order ≺ over jobs, the POPOCS opera-
tor iteratively corrects constraint violations and ensures row and column normalization, yielding the doubly-stochastic
matrix P̂ with configurable temperature τ . At inference time, the non-differentiable matching operator M(·) corrects
the continuous relaxation, while P̂ is used during training.

Expert
programmer

Metropolis
Hastings

ILP solverPartially
ordered jobs

Schedules as
permutations

Optimizer

Figure 2: Automated data generation process. A compu-
tationally expensive scheduler processes large datasets of
job sequences offline, producing a ground-truth schedule
dataset to be imitated.

(POCS) algorithm.

minimize
x̂

1
2
||x− x̂||22 (11)

subject to Ax̂≤ b (12)
=⇒ x̂ = POCSA,b(x) (13)

The POCS method is a generalization of alternating projec-
tion schemes that find a feasible point in a convex polyhedron
proximal to an initial unbounded point [22].

Alternating projections with fixed constraints have been
used in prior learning-to-rank work. The Sinkhorn-Knopp
algorithm [23] is an alternating normalization scheme that
alternates between enforcing constraint (6) and (7) on an
arbitrary matrix. That is, the Sinkhorn-Knopp algorithm alter-
natively normalizes rows and columns of the matrix, mapping
rows and columns onto the simplex Pn. Given a positive ma-
trix, in the limit of iterations, the Sinkhorn-Knopp algorithm
converges to a doubly stochastic matrix. By truncating the
alternating normalization optimization and applying differ-
entiable softmax normalizations, the so-called incomplete
Sinkhorn iteration has been used for end-to-end learning of
rankings and matchings [14, 15]. The Sinkhorn iteration
can be seen as a projection onto the Birkhoff polytope in a
KL-minimizing sense.

Similarly, in the limit of iterations, variants of the projec-

tion onto convex sets algorithm will converge to a point in
the intersection, enforcing desired constraints. In particular,
the space of feasible schedules is often a convex set. In our
relaxation, B≺n ⊆Bn ⊂ [0,1]n×n. B≺n is an intersection of
the Birkhoff polytope Bn with a finite number of half-spaces
corresponding to constraint (8), so B≺n is a bounded convex
set of feasible relaxed schedules.

In Algorithm 1, we define the EPOCS (end-to-end differen-
tiable projection onto convex set) operator that incorporates
incomplete POCS optimization into a network’s architecture
via iterative orthogonal projection. The constraints that de-
fine the feasible region for the EPOCS operator may vary
between inputs, unlike existing reparameterizations and the
Sinkhorn iteration. With an automatic differentiation library,
we can backpropagate through such half-space projections
for end-to-end learning of a model including EPOCS as a
layer. As constraints can be customized, the EPOCS operator
defines a general procedure for enforcing constraints on a
neural network.

Algorithm 1: EPOCS provides a differentiable projective
reparameterization of general dynamic constraints.

1 function EPOCS (G,A,~b);
Input :G ∈ Rn×n, A ∈ Rm×n2

,~b ∈ Rm

Output :Ĝ ∈ Rn×n such that vec(Ĝ)T AT ≤~b
2 ĝ = vec(G);
3 for it = 1 to MAXITERS do
4 for c = 1 to m do
5 if 〈~ac, ĝ〉> bc then
6 // Project onto affine half-space boundary
7 ~uc =~ac ∗ bc

〈~a,~a〉 ;
8 ĝ =~uc +proj~ac

(ĝ−~uc);
9 end

10 end
11 end
12 return vec−1(ĝ);

3.3 Specializing EPOCS to partial orders

3

For many problems, the constraint matrix A in Algorithm 1
is highly sparse. For example, when a partial order is violated,
only two columns of the matrix are changed by the orthog-
onal projection. Exploiting this, we present Algorithm 2,
the POPOCS operator, a specialization of EPOCS to map
real valued matrices onto the partial order preserving doubly
stochastic matrix polytope B≺n .

Algorithm 2, POPOCS, extends the Sinkhorn operator to
include projections onto the half-spaces defined by constraint
(8). While POPOCS can be applied for arbitrarily many
iterations, in practice a moderate number of iterations is
sufficient to correct partial order violations and approximate
a doubly stochastic matrix, whereby computational cost and
correctness can be traded off (Section 4).

Algorithm 2: POPOCS provides a sparse, differentiable
projective reparameterization of the partial order preserv-
ing doubly stochastic matrix polytope B≺n .

1 function POPOCS (G,~a,~b);
Input :G ∈ Rn×n, ~α ∈ Rm, ~β ∈ Rm where xαi ≺ xβi

Output :P ∈ Rn×n such that P ∈B≺n
2 P = G;
3 for it = 1 to MAXITERS do
4 P = ROWNORMALIZE(P);
5 // Pi j = Pi j− 1

n ∑ j′ Pi j′ +
1
n

6 P = COLNORMALIZE(P);
7 // Pi j = Pi j− 1

n ∑i′ Pi′ j +
1
n

8 for i = 1 to m do
9 if 〈PT

βi
,v〉−〈PT

αi
,v〉< 1 then

10 // PO violation. Project onto affine space

11 Ai j =

−1 i = αi

1 i = βi

0 otherwise

12 ~u = vec(A)
〈A,A〉H ;

13 ~p =~u+projvec(A)(p−~u);
14 P = vec−1(~p);
15 end
16 end
17 end
18 return vec−1(ĝ);

4. EVALUATION

4.1 Scheduling architecture
In Figure 1, we present the POCSNET neural network

architecture, an end-to-end supervised order predicting auto-
scheduler that applies POPOCS to enforce ordering con-
straints. The scheduler is non-greedy, selecting a schedule
for the entire set of jobs. Such an architecture is applicable
to instruction scheduling, text generation, packet switching,
and information retrieval. For our instruction scheduling
application, each instruction in an input basic block is em-
bedded into a 256-dimensional space by the job embedding
LSTM, consisting of a single cell. A multilayer perceptron

0 25 50 75 100 125 150
0.0

0.1

0.2

0.3

0.4

M
ea

n
da

ta
 d

ep
en

de
nc

y
vi

ol
at

io
ns POPOCS (20 training iterations)

Sinkhorn-Knopp

0 25 50 75 100 125 150
POPOCS projection iterations

0.5

0.6

0.7

0.8

0.9

1.0

Fr
ac

tio
n

va
lid

 sc
he

du
le

s

Figure 3: Data dependency violations in schedules pre-
dicted by POCSNET decay as more POPOCS iterations
are applied at test time. During training, only 20 itera-
tions are applied for efficiency. In contrast, the baseline
Sinkhorn auto-scheduler produces invalid schedules at a
high rate.

(MLP) with 2 hidden layers of 256 hidden units flattens the n
instruction embeddings and proposes an n×n-dimensional
unconstrained matrix. The MLP applies batch normalization
and ReLU activations after each hidden layer. Finally, the
non-parametric POPOCS operator projects the proposal ma-
trix into the feasible set with data dependencies inferred from
the source block.

As a baseline architecture, the POPOCS operator is re-
placed with 20 iterations of Sinkhorn normalization, enforc-
ing double stochasticity constraints (6) and (7).

4.2 Dataset and training
We train the network to imitate the instruction schedules

produced by GCC 4.9.4 on optimization level -O3 on a
dataset of 77,202 basic blocks, each consisting of 5 instruc-
tions. These blocks are a subset of those used by [9], extracted
from compiled binaries for the SPEC2006 and SPEC2017
datasets. During training, the dataset is augmented by ran-
domly sampling a topological sort of the instructions in each

4

Table 1: POCSNET metrics on 5 instruction basic blocks
Accuracy Kendall tau Violations Percent valid schedules

Sinkhorn iteration 0.356 0.238 0.200 84.14%
POPOCS @ 20 0.397 0.222 0.099 91.08%
POPOCS @ 40 0.396 0.226 0.081 92.41%
POPOCS @ 60 0.393 0.228 0.077 92.95%
POPOCS @ 150 0.394 0.229 0.070 93.52%

block such that no data dependencies are violated in the input.
Metrics are computed on a validation set of 8,579 similarly
shuffled basic blocks. Note that not all data dependencies
are currently modeled, including those involving status flags.
While we train POCSNET to imitate the compiler’s behavior,
in practice, the training set of basic blocks may be exhaus-
tively scheduled or optimized with stochastic search as it is
created offline, as in Figure 2. POCSNET is trained with
cross-entropy loss between ground-truth permutation matri-
ces and the predicted, POPOCS-corrected doubly stochastic
matrices. The proposed network is optimized with SGD and
Nesterov accelerated gradients with 20 alternating projection
iterations, and our baseline Sinkhorn network is trained with
the Adam optimizer. Both networks are trained for 24 epochs
(90,000 iterations) at a batch size of 20 and learning rate of
0.01.

4.3 Results
In Table 1, we show metrics for instruction schedulers

learned with a baseline Sinkhorn iteration and the proposed
POPOCS operator for various iteration counts. Applying
POPOCS iterations significantly reduces the average number
of data dependency violations per basic block (PO viola-
tions) in predicted schedules while increasing the fraction of
schedules that perfectly reconstruct the ground truth block
(accuracy). The normalized Kendall tau distance measures
similarity between the predicted and ground truth schedules,
indicating the fraction of the 1

2 n ∗ (n− 1) instruction pairs
that are transposed in the prediction (lower is better).

While POCSNET is trained with 20 projective iterations,
additional iterations may be performed at test time to better
correct violations with minimal accuracy loss. Figure 3 shows
the decay in data dependency violations in predicted sched-
ules as iterations are increased. POCSNET still produces a
small number of invalid schedules due to the finite number of
corrective iterations and the relaxation introduced in (9). Due
to use of the bipartite matching operator (10), constraint (8)
may not be satisfied in the discretized solution even if it holds
in the relaxed solution. These violations can be corrected via
a heuristic, or a greedy scheduler may be applied instead of
POCSNET when a data dependency violation is detected.

Schedules predicted by POCSNET have comparable per-
formance to those produced by GCC 4.9.4. In Table 2, we
show the mean cycles per block as predicted by the LLVM
Machine Code Analyzer (llvm-mca) [8] on 7,814 validation
blocks with feasible predicted schedules. We evaluate latency
with the llvm-mca model of Intel X86 Haswell processors,
averaged over 100 simulated iterations. As a comparison,
we evaluate the predicted latency of the blocks input to the
network, which undergo a random topological sort prior to

Table 2: Validation basic block latencies from llvm-mca
Cycles per iteration (mean)

GCC 4.9.4 schedules 2.3396
POCSNet, POPOCS @ 20 2.3430
Random input schedules 2.3464

scheduling. In the Appendix, we provide qualitative examples
of scheduled basic blocks.

5. RELATED WORK

Instruction scheduling.
Instruction scheduling is a compiler optimization applied

during code generation to maximize instruction level paral-
lelism available in a program. The instruction scheduling
literature has seen a host of heuristics for local and global
instruction scheduling, where instructions can move within
and between basic blocks (i.e. across control flow), respec-
tively [24]. These approaches include greedy algorithms that
select one instruction at a time to dispatch (list scheduling).
[1] motivate and [2] develop an integer linear program to op-
timally and simultaneously select the ordering of instructions
in a binary and allocate registers. However, ILP solvers are
too computationally expensive for practical use in produc-
tion compilers. To accelerate scheduling without resorting
to greedy heuristics, we develop a learning approach to full
basic block instruction scheduling, and apply projective repa-
rameterizations on the output of the network to satisfy order-
ing restrictions stemming from data dependencies between
instructions.

Kernel computation scheduling.
For numerical computing and image processing applica-

tions, Halide [25, 26] and Tiramisu [27] provide program-
ming environments that allow programmers to separately
specify an algorithm and an execution order (schedule) at
a high level of abstraction. These systems originally of-
fered limited auto-scheduling capability. Auto-tuning applies
black-box optimization techniques to tune program parame-
ters and has been used for compiler pass ordering, analogous
to instruction scheduling [28]. Tensor Comprehensions [29]
extends Halide with black-box genetic algorithms that opti-
mize the generated kernel, though this is costly and requires
many executions of the kernel itself. Halide now employs
heuristics for auto-scheduling [30].

Learning approaches to permutation selection.

5

The Park system evaluated reinforcement learning tech-
niques for predicting matchings in packet switching; such a
matching is parameterized as a permutation [31]. However,
their policy only applies to small switch configurations (3
input and output ports) without routing constraints. Training
penalties allow permutation matrices to be learned as param-
eters [16], though such penalties cannot guarantee network
outputs are valid. The information retrieval literature has seen
a host of pointwise [32] and pairwise [33, 34, 35] ranking
schemes, where items or pairs of items are scored and sorted.
For a listwise approach, relaxations of the matching operator
through incomplete Sinkhorn normalization [23] reparameter-
ize the output of a network to guarantee double stochasticity
and can learn complete list rankings end-to-end [12, 15, 14,
13]. Unlike our work, such approaches have not supported
additional constraints such as partial orders. A listwise ap-
proach is important for scheduling, as multiple jobs influence
the latency of individual jobs.

Continuous relaxations with constraints.
Bayesian network structure learning, a combinatorial DAG

selection problem, has been framed as an equality constrained
continuous optimization problem (continuous ECP) solvable
with gradient based methods [17]. We initially developed a
similar approach to solve instruction scheduling via continu-
ous optimization. This requires a pretrained, differentiable
objective that captures cost under different orderings such
as [9]. In other settings, our supervised learning approach
allows optimal or black-box schedulers to be imitated in the
absence of a cost model.

6. CONCLUSION
In this work, we propose a general EPOCS operator that

imposes constraints on neural network outputs in an end-
to-end trainable model. Based on a relaxed formulation of
order-based auto-scheduling and a specialization of EPOCS
termed POPOCS, we design an auto-scheduler with partial
order constraints, trained with supervision from ground-truth
schedules. Beyond order-based auto-scheduling, constraint-
aware learners are a promising direction of research for the
systems community as they enable algorithms that are both
correct and data-driven.

7. ACKNOWLEDGEMENTS
We would like to thank Alex Renda and Charith Mendis

for providing the basic block dataset used in the evaluation
of this work, and for fruitful discussions about our approach.
We also thank Paras Jain for discussions and feedback on a
draft of this paper. This research was, in part, funded by the
U.S. Government. The views and conclusions contained in
this document are those of the authors and should not be inter-
preted as representing the official policies, either expressed
or implied, of the U.S. Government.

8. REFERENCES
[1] R. Motwani, K. V. Palem, V. Sarkar, and S. Reyen, “Combining

Register Allocation and Instruction Scheduling,” 1995.

[2] R. C. Lozano, M. Carlsson, G. H. Blindell, and C. Schulte, “Register
Allocation and Instruction Scheduling in Unison,” in Proceedings of
the 25th International Conference on Compiler Construction, CC

2016, (New York, NY, USA), pp. 263–264, ACM, 2016. event-place:
Barcelona, Spain.

[3] G. D. Micheli, Synthesis and Optimization of Digital Circuits.
McGraw-Hill Higher Education, 1st ed., 1994.

[4] A. McGovern and J. E. B. Moss, “Scheduling Straight-Line Code
Using Reinforcement Learning and Rollouts,” in NIPS, 1998.

[5] J. E. B. Moss, P. E. Utgoff, J. Cavazos, D. Precup, D. Stefanovic, C. E.
Brodley, and D. Scheeff, “Learning to schedule straight-line code,” in
Advances in Neural Information Processing Systems, pp. 929–935,
1998.

[6] T. Russell, “Learning Instruction Scheduling Heuristics from Optimal
Data,” Master’s thesis, University of Waterloo, 2006.

[7] “Intel Architecture Code Analyzer (IACA).”

[8] “LLVM Machine Code Analyzer (llvm-mca).”

[9] C. Mendis, S. Amarasinghe, and M. Carbin, “Ithemal: Accurate,
Portable and Fast Basic Block Throughput Estimation using Deep
Neural Networks,” arXiv:1808.07412 [cs, stat], Aug. 2018. arXiv:
1808.07412.

[10] E. Schkufza, R. Sharma, and A. Aiken, “Stochastic Program
Optimization,” Commun. ACM, vol. 59, pp. 114–122, Jan. 2016.

[11] G. Birkhoff, “Tres observaciones sobre el algebra lineal,” 1946.

[12] R. P. Adams and R. S. Zemel, “Ranking via Sinkhorn Propagation,”
arXiv:1106.1925 [cs, stat], June 2011. arXiv: 1106.1925.

[13] S. W. Linderman, G. E. Mena, H. Cooper, L. Paninski, and J. P.
Cunningham, “Reparameterizing the Birkhoff Polytope for Variational
Permutation Inference,” arXiv:1710.09508 [stat], Oct. 2017. arXiv:
1710.09508.

[14] R. S. Cruz, B. Fernando, A. Cherian, and S. Gould, “DeepPermNet:
Visual Permutation Learning,” arXiv:1704.02729 [cs], Apr. 2017.
arXiv: 1704.02729.

[15] G. Mena, D. Belanger, S. Linderman, and J. Snoek, “Learning Latent
Permutations with Gumbel-Sinkhorn Networks,” arXiv:1802.08665
[cs, stat], Feb. 2018. arXiv: 1802.08665.

[16] J. Lyu, S. Zhang, Y. Qi, and J. Xin, “AutoShuffleNet: Learning
Permutation Matrices via an Exact Lipschitz Continuous Penalty in
Deep Convolutional Neural Networks,” p. 13, Jan. 2019.

[17] X. Zheng, B. Aragam, P. Ravikumar, and E. P. Xing, “DAGs with NO
TEARS: Continuous Optimization for Structure Learning,”
arXiv:1803.01422 [cs, stat], Mar. 2018. arXiv: 1803.01422.

[18] H. W. Kuhn, “The Hungarian method for the assignment problem,”
Naval Research Logistics Quarterly, vol. 2, pp. 83–97, Mar. 1955.

[19] J. Munkres, “Algorithms for the assignment and transportation
problems,” p. 7, Mar. 1957.

[20] B. Amos and J. Z. Kolter, “Optnet: Differentiable optimization as a
layer in neural networks,” in Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pp. 136–145, JMLR.
org, 2017.

[21] B. Amos, Differentiable Optimization-Based Modeling for Machine
Learning. PhD thesis, Carnegie Mellon University, 2019.

[22] H. H. Bauschke and J. M. Borwein, “On projection algorithms for
solving convex feasibility problems,” SIAM review, vol. 38, no. 3,
pp. 367–426, 1996.

[23] R. Sinkhorn and P. Knopp, “Concerning nonnegative matrices and
doubly stochastic matrices,” Pacific Journal of Mathematics, vol. 21,
pp. 343–348, May 1967.

[24] D. Bernstein and M. Rodeh, “Global instruction scheduling for
superscalar machines,” in ACM SIGPLAN Notices, vol. 26,
pp. 241–255, ACM, 1991.

[25] J. Ragan-Kelley, A. Adams, S. Paris, M. Levoy, S. Amarasinghe, and
F. Durand, “Decoupling Algorithms from Schedules for Easy
Optimization of Image Processing Pipelines,” p. 12, 2012.

[26] J. Ragan-Kelley, C. Barnes, and A. Adams, “Halide: A Language and
Compiler for Optimizing Parallelism, Locality, and Recomputation in
Image Processing Pipelines,” p. 12, 2013.

[27] R. Baghdadi, J. Ray, M. B. Romdhane, E. Del Sozzo, A. Akkas,
Y. Zhang, P. Suriana, S. Kamil, and S. Amarasinghe, “Tiramisu: A
Polyhedral Compiler for Expressing Fast and Portable Code,”
arXiv:1804.10694 [cs], Apr. 2018. arXiv: 1804.10694.

6

[28] J. Ansel, S. Kamil, K. Veeramachaneni, J. Ragan-Kelley, J. Bosboom,
U.-M. O’Reilly, and S. Amarasinghe, “OpenTuner: An Extensible
Framework for Program Autotuning,” in International Conference on
Parallel Architectures and Compilation Techniques, (Edmonton,
Canada), Aug. 2014.

[29] N. Vasilache, O. Zinenko, T. Theodoridis, P. Goyal, Z. DeVito, W. S.
Moses, S. Verdoolaege, A. Adams, and A. Cohen, “Tensor
Comprehensions: Framework-Agnostic High-Performance Machine
Learning Abstractions,” arXiv:1802.04730 [cs], Feb. 2018. arXiv:
1802.04730.

[30] R. T. Mullapudi, A. Adams, D. Sharlet, J. Ragan-Kelley, and
K. Fatahalian, “Automatically scheduling halide image processing
pipelines,” ACM Transactions on Graphics, vol. 35, pp. 1–11, July
2016.

[31] H. Mao, A. Narayan, P. Negi, H. Wang, J. Yang, H. Wang, M. Khani,
S. He, R. Addanki, R. Marcus, F. Cangialosi, W.-H. Weng, S. Han,

T. Kraska, and M. Alizadeh, “Park: An Open Platform for Learning
Augmented Computer Systems,” p. 12, 2019.

[32] W. S. Cooper, F. C. Gey, and D. P. Dabney, “Probabilistic Retrieval
Based on Staged Logistic Regression,” in Proceedings of the 15th
Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’92, (New York, NY,
USA), pp. 198–210, ACM, 1992. event-place: Copenhagen, Denmark.

[33] C. J. Burges, R. Ragno, and Q. V. Le, “Learning to rank with
nonsmooth cost functions,” in Advances in neural information
processing systems, pp. 193–200, 2007.

[34] C. J. Burges, “From RankNet to LambdaRank to LambdaMART: An
Overview,” Tech. Rep. MSR-TR-2010-82, June 2010.

[35] L. Rigutini, T. Papini, M. Maggini, and F. Scarselli, “SortNet:
Learning to Rank by a Neural Preference Function,” IEEE
Transactions on Neural Networks, vol. 22, pp. 1368–1380, Sept. 2011.

7

9. APPENDIX: PREDICTED SCHEDULES
In this section, we present basic blocks extracted from the compiled SPEC benchmark suite where POCSNET and GCC 4.9.4

yield the same schedules. POCSNET is trained and evaluated with 20 iterations of POPOCS, and GCC 4.9.4 schedules the
blocks with optimization level -O3 targetting Haswell processors. These schedules are represented by permutation matrices that
specify a transformation to the shuffled block.

Latency is measured in cycles per iteration and is predicted by the llvm-mca tool distributed with LLVM 8.0.0. llvm-mca
is invoked with flags -x86-asm-syntax=intel -mcpu=haswell. Cycles are averaged over 100 simulated iterations of
execution to expose steady-state processor behavior.

Block emitted by GCC 4.9.4, POCSNET
Cycles per iteration: 14.2

movsd xmm5, qword p t r [r s p +0x20]
movsd xmm3, qword p t r [r13 +0 xa0]
subsd xmm3, xmm5
d i v s d xmm3, xmm8
ucomisd xmm2, xmm3

POCSNET proposes a transposition of the first two movsd instructions,
with low confidence prior to matching due to the similarity of the
instructions. Read after write (RAW) data dependencies are preserved.

Block emitted by GCC 4.9.4, POCSNET
Cycles per iteration: 1.28

xor e s i , e s i
mov r8d , 0 x0000000b
mov ecx , 0 x00000001
l e a r d i , [r s p +0 x00017720]
mov edx , 0 x00000001

As this basic block contains no data dependencies, only row and col-
umn normalizations are performed by POPOCS to produce the predic-
tion (left matrix).

Block emitted by GCC 4.9.4, POCSNET
Cycles per iteration: 13.03

add rsp , 0x18
mov r s i , rbx
mov r d i , rbp
pop rbx
pop rbp

POCSNET proposes a transposition of the first and third instruction in
its input block (omitted), yielding the block above and matching GCC.

8

	Introduction
	Scheduling as optimization
	Conducting the optimization
	Correcting the relaxation

	Projective reparameterization for learned schedulers
	Motivation for a learned scheduler
	Enforcing constraints via alternatingprojections
	Specializing ePOCS to partial orders

	Evaluation
	Scheduling architecture
	Dataset and training
	Results

	Related work
	Conclusion
	Acknowledgements
	References
	Appendix: Predicted schedules

