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Figure 4: One step of recursive Discrete Residual Flow. The log potential is used to update the global
feature map F . DRF then predicts a residual  t;✓t to flow to the log potential for the next timestep.

Negative log likelihood (NLL) ADE (m) FDE (m) Mass Ratio (%)
Model Mean @ 1 s @ 3 s @ 10 s 0.2-10s @ 1 s @ 3 s @ 10 s Acc. Recall

Density Net 5.39 2.87 3.96 6.74 3.49 0.93 1.72 7.66 77.99 81.33
MDN-4 3.01 1.64 2.00 4.33 1.47 0.38 0.69 3.38 87.85 84.12
MDN-8 3.43 1.60 2.77 4.79 1.78 0.60 0.88 3.91 85.56 84.19
ConvLSTM 2.51 0.89 1.86 4.07 1.58 0.47 1.06 3.20 88.02 85.02

DRF-NET 2.37 0.76 1.74 3.83 1.23 0.35 0.62 2.71 89.78 85.41

Table 1: Comparison of the baselines and our proposed model DRF-NET with access to ground-truth
observations. Metrics are negative log likelihood in 0.5 ⇥ 0.5 m2 bin containing future GT position,
average displacement error (ADE) and final displacement error (FDE) in meters, and percent of
predicted mass. Mean NLL, ADE and the mass ratios are averaged over 50 timesteps, t = 0.2� 10 s.

where the expectation E [·] is taken over all possible sequences and will be approximated via mini-
batches. ⇥ = {✓1, · · · , ✓Tf , w} where w denotes the parameters of the backbone network.

4 Evaluation

There is not a standard dataset for probabilistic pedestrian prediction with real-world maps and
dynamic objects. Thus, we construct a large-scale dataset of real world recordings, object annotations,
and online detection-based tracks. We implement baseline pedestrian prediction networks inspired
by prior literature [28, 29, 15] and compare DRF-NET against these baselines on standard negative
log likelihood and displacement error measures. We propose an evaluation metric for measuring
prediction multimodality, which is one of the most characteristic properties of pedestrian behavior.
We also analyze the calibration, entropy and semantic interpretation of predictions. Finally, we present
qualitative results in complex urban scenarios.

4.1 Dataset

Our dataset consists of 481,927 ground truth pedestrian trajectories gathered in several North-
American cities. The dataset is split into 375,700 trajectories for training, 34,571 for validation,
and 71,656 held-out trajectories for testing. Dynamic objects are manually annotated in a 360�,
120 m range view from an on-vehicle LiDAR sensor. Annotations contain 6 s (30 frames) of past
observations and 10 s (50 frames) of the future. These 5 Hz, 16 s sliding windows are extracted from
longer logs.

We also fine-tune and evaluate DRF-NET with variable length trajectories from an object detector
in the same scenarios. The detector is discussed in Section 3. This assesses real-world, on-vehicle
prediction performance, reflecting the challenges inherent to real perception such as partial observ-
ability, occlusion and identity switches in tracking algorithms. While PoIs are annotated for a full
16 seconds in our ground truth experiments, realistic tracks are of variable length. A self-driving
vehicle must predict the behavior of other agents with a very limited set of observations. Thus, we
evaluate DRF-NET by predicting 10 seconds (50 frames) into the future, given tracks with as few
as 3 historical frames, sufficient for estimating acceleration. Relaxing the requirements about past
history avoids skewing our dataset toward easily tracked pedestrians, such as stationary agents.

4.2 Baselines

In this section, we describe two baseline predictor families. These baselines are trained end-to-end
to predict distributions given features F(⌦) produced by the same backbone as our proposed model.
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Real detection data (NLL)
Model Mean @ 1 s @ 3 s @ 10 s

Density Net 5.64 1.88 4.12 7.91
MDN-4 3.21 1.52 2.54 4.71
MDN-8 3.21 1.53 2.55 4.73
ConvLSTM 3.14 1.54 2.51 4.64

DRF-NET 2.98 1.47 2.39 4.36

Table 2: Probabilistic prediction comparison of the baselines
and our proposed model DRF-NET when noisy detections
(online tracks) are observed instead of the ground-truth.

Figure 5: Calibration curves and ex-
pected calibration error (⇤ 10�3%)

Mixture Density Networks (MDNs) represent a conditional posterior over continuous targets given
continuous inputs with a fully-connected neural network that predicts parameters of Gaussian mixture
model [7]. For a baseline, we implement a variant of this architecture that models pedestrian posteriors
at multiple time horizons, conditioned on the past history and current location. Inspired by Rehder
et al. [15], we generate the i-th mixture component from the neuron outputs {mx,my, sx, sy, r, p}i
which are then reparameterized as �x,i = exp (sx,i) + ✏,�y,i = exp (sy,i) + ✏, and ⇢i = tanh (ri)
to obtain the mean ~µi, covariance matrix ⌃i and the responsibility of the mixture ⇡i:

~µi =


mx,i

my,i

�
, ⌃i =


�
2
x,i ⇢i�x,i�y,i

⇢i�x,i�y,i �
2
y,i

�
, ⇡i =

exp (pi)PN
j=1 exp (pj)

(6)

Training MDNs is challenging due to a high sensitivity to initialization and parameterization. To
avoid numerical instabilities, the minimum standard deviation is ✏. Even with a careful initialization
and parameterization, training can be unstable, which we mitigate by discarding abnormally large
losses. Note that Rehder et al. [15] stabilized training by minimizing only the minimum of the
batchwise negative log likelihood. Minimizing this minimum loss leads to a good performance on
easy examples, but catastrophic performance on hard ones. Lastly, conversions from a discretized
spatial input to a continuous output can be challenging to learn [30], a problem that our proposed
DRF-NET avoids via a discretized output that is spatially aligned with the input.

ConvLSTM In contrast to our DRF-NET that recursively updates output distributions in the log-
probability space, one can also recurrently update hidden state using a Convolutional LSTM [21]
that observes the previous prediction. Output distributions are then predicted from the hidden state.

4.3 Results

We evaluate negative log likelihood (NLL) at short and long prediction horizons, where lower values
indicate more accurate predictions, as well as the mean NLL across all 50 future timesteps. In
Table 1 and 2, we present results on the held-out test set for ground truth annotated logs and tracked,
real-world detections, respectively. Our proposed DRF-NET achieves a superior likelihood over the
baselines by introducing a discrete state representation and a probability flow between timesteps.

Likelihood on ground truth tracks In order to evaluate our results under perfect perception, we
benchmark on ground truth (annotated) pedestrian trajectories. Table 1 shows that our proposed
model reduces the mean NLL by 0.64 when compared to the best performer among the MDNs and
by 0.14 with respect to the ConvLSTM baseline. This corresponds to a 90% increase in geometric
mean likelihood compared to the best MDN and to a 15% increase when compared to the ConvLSTM.

Likelihood on online tracks Under online, imperfect perception, DRF-NET achieves a reduction
of 0.23 in mean NLL over the best MDN and 0.16 over ConvLSTM, i.e. a 26% and a 17% increase
of the geometric mean likelihood of the future observed pedestrian positions, respectively (Table 2).
DRF-NET’s sequential residual updates may regularize and smooth predictions despite perception
noise. Adding more than 4 components to the density networks does not reduce NLL. Directly
predicting occupancy probability over a grid delivers stronger performance than discretizing a con-
tinuous spatial density. Using an explicit memory with hidden state updates (ConvLSTM) also has
inferior performance to our proposed flow between output distributions.

Displacement error We compute the expected root mean squared error, or expected displacement
error, between the ground truth pedestrian position and model predictions. This is approximated by
discretizing posteriors, computing the distance from each cell to the ground truth, and taking the
average weighted by confidence at each cell. Table 1 reports the error in meters, averaged over 50
timesteps (ADE) and at specific horizons (FDE). DRF-NET significantly outperforms all baselines.
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Multiscale scene embedding
o Spatiotemporal feature extraction from BEV

scene raster with feature pyramid network

Probabilistic motion forecasting
o Predict marginal occupancy distributions
o Categorical predictions are flexible, multimodal

Bayesian approach: Learn conditional distributions 
and marginalize à 𝑂(𝐾$) cost per timestep for K bins

DRF-NET (ours): Approximate intractable 
marginalization using function approximator, 
amortizing cost à 𝑂(𝐾) probability flow that predicts 
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Qualitative results
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