uber ATG

Discrete Residual Flow for Probabilistic Pedestrian Behavior Prediction

Ajay Jain, Sergio Casas, Renjie Liao, Yuwen Xiong, Song Feng, Sean Segal, Raquel Urtasun

Introduction

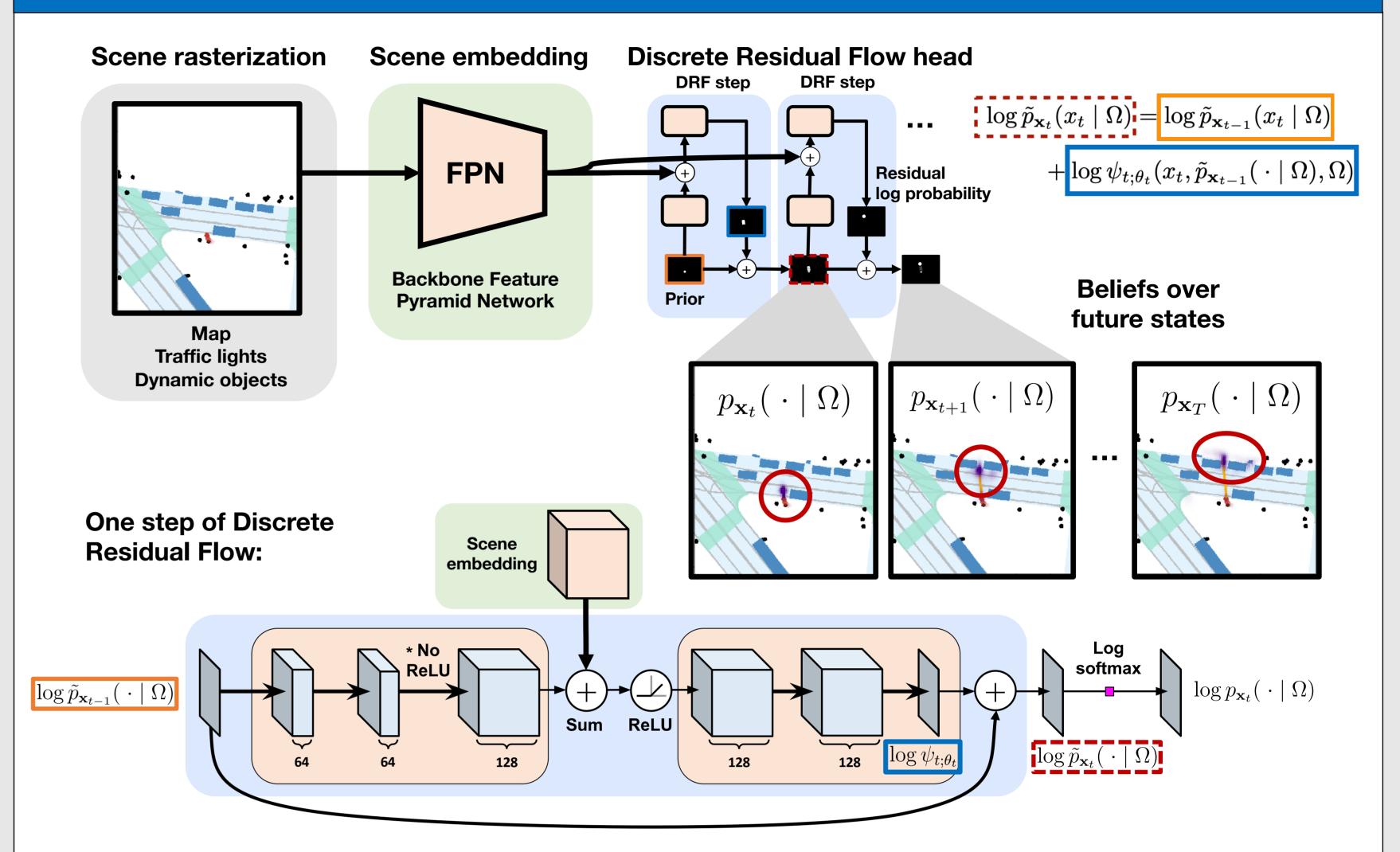
Goal: Forecast future pedestrian spatial occupancy over long horizon (10 seconds) in cities

Motivation: Safe motion planning in self-driving

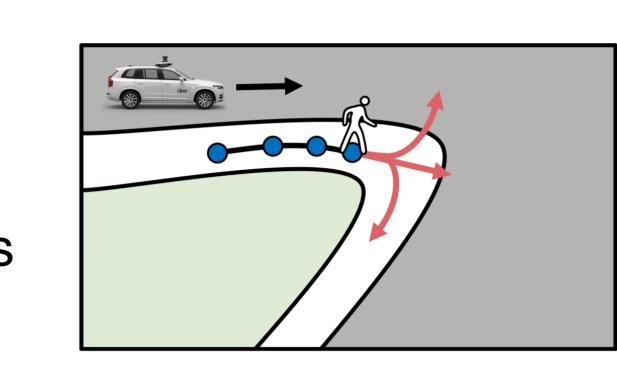
Input: Semantic map, dynamic actor tracks

Challenges:

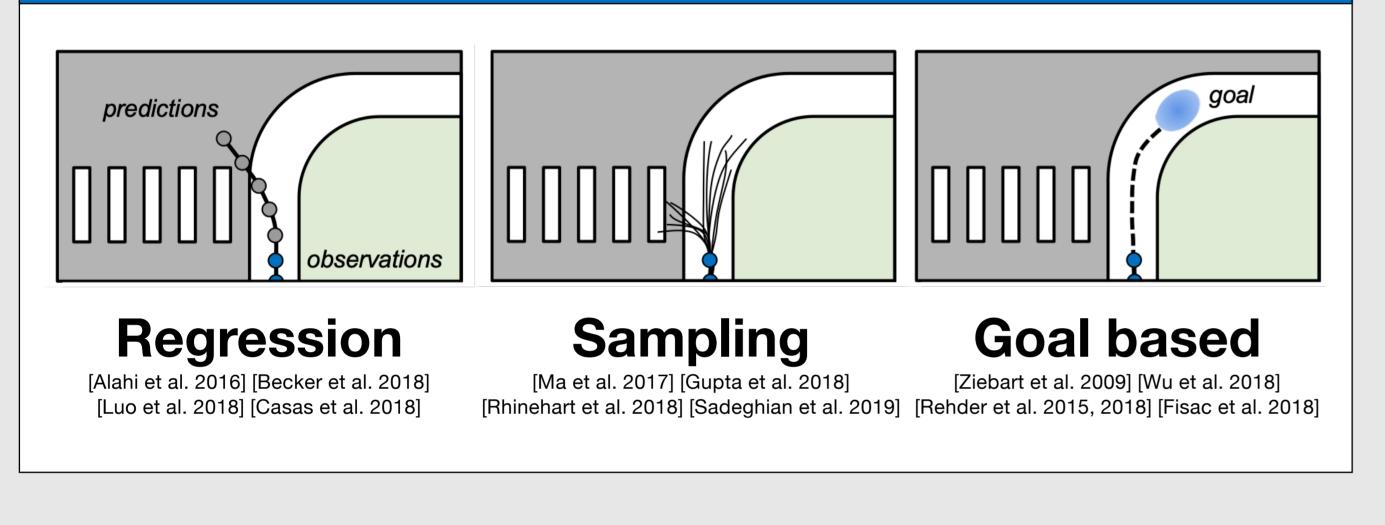
Network architecture



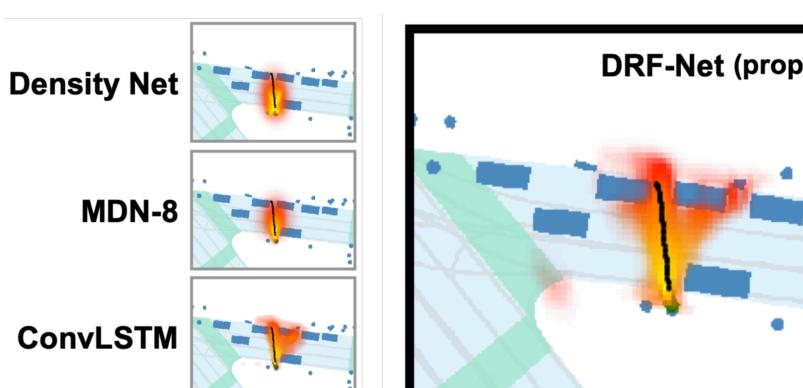
- Multiple intentions
- Significant uncertainty
- Partial observability
- Non-gaussian posteriors
- o Spatiotemporal inputs

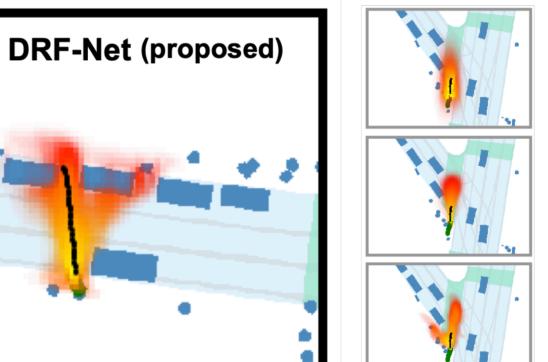


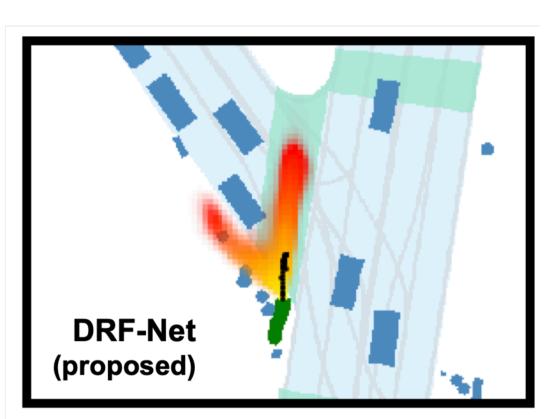
Prior approaches



Qualitative results



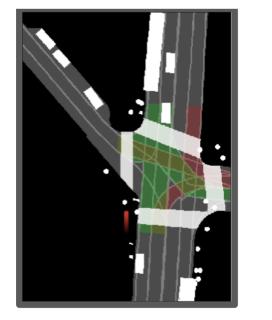


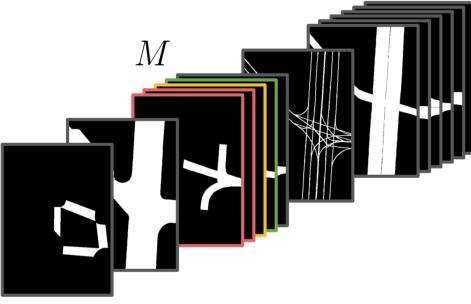


Our approach

Multiscale scene embedding

Spatiotemporal feature extraction from BEV scene raster with feature pyramid network





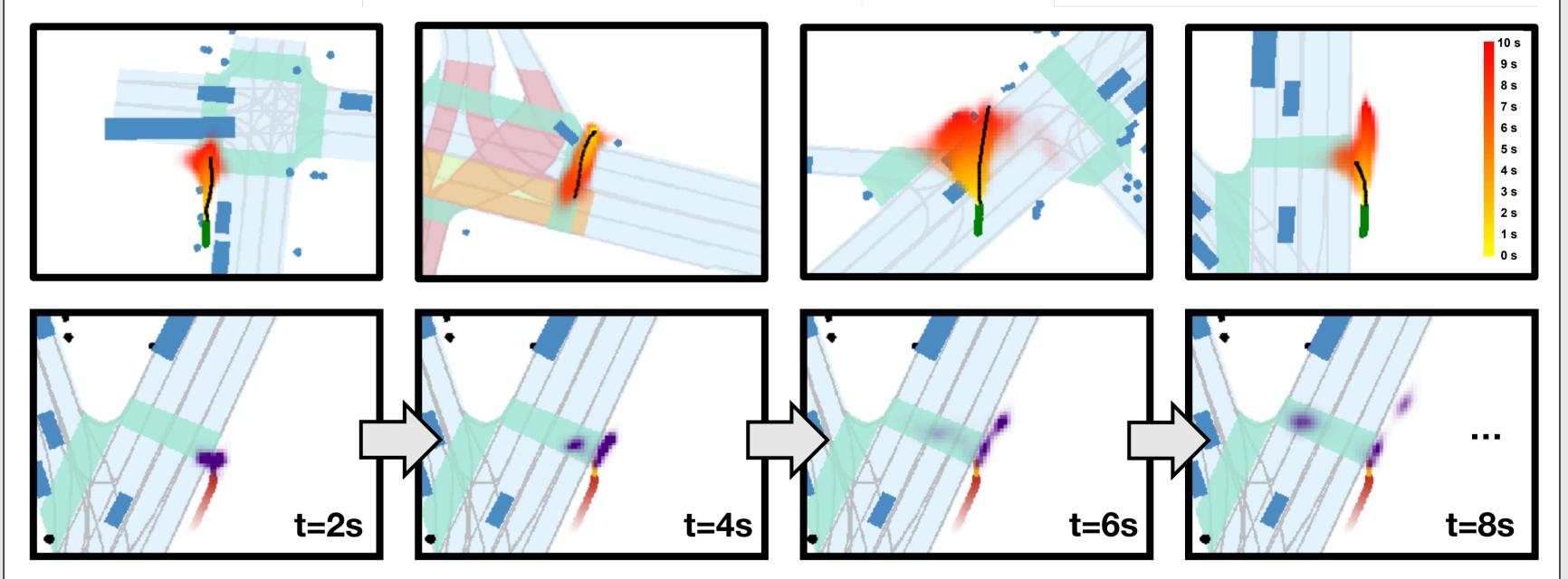
(a) Aggregated rasterization Dynamic objects shown at t=0 (b) Semantic map channels
(c) Pol + dynamic object history
Crossings, road mask, lights, lanes
Subset of timesteps shown

 $D_{\leq 0}$

Probabilistic motion forecasting

- Predict marginal occupancy distributions
- Categorical predictions are flexible, multimodal

Bayesian approach: Learn conditional distributions and marginalize $\rightarrow O(K^2)$ cost per timestep for K bins



Evaluation

Model	Negative log likelihood (NLL)				ADE (m)	FDE (m)			Mass Ratio (%)		Real detection data (NLL)			
	Mean	@ 1 s	@ 3 s	@ 10 s	0.2-10s	@ 1 s	@ 3 s	@ 10 s	Acc.	Recall	Mean	@ 1 s	@ 3 s	@ 10 s
Density Net	5.39	2.87	3.96	6.74	3.49	0.93	1.72	7.66	77.99	81.33	5.64	1.88	4.12	7.91
MDN-4	3.01	1.64	2.00	4.33	1.47	0.38	0.69	3.38	87.85	84.12	3.21	1.52	2.54	4.71
MDN-8	3.43	1.60	2.77	4.79	1.78	0.60	0.88	3.91	85.56	84.19	3.21	1.53	2.55	4.73
ConvLSTM	2.51	0.89	1.86	4.07	1.58	0.47	1.06	3.20	88.02	85.02	3.14	1.54	2.51	4.64
DRF-Net	2.37	0.76	1.74	3.83	1.23	0.35	0.62	2.71	89.78	85.41	2.98	1.47	2.39	4.36

 $p_{\mathbf{x}_{t}}(x_{t} \mid \Omega) = \sum_{x_{t-1}} p_{\mathbf{x}_{t} \mid \mathbf{x}_{t-1}}(x_{t} \mid x_{t-1}, \Omega) \ p_{\mathbf{x}_{t-1}}(x_{t-1} \mid \Omega)$

DRF-NET (ours): Approximate intractable marginalization using function approximator, amortizing cost $\rightarrow O(K)$ probability flow that predicts a residual update to previous timestep marginal

$$p_{\mathbf{x}_{t}}(x_{t} \mid \Omega) = \left[\sum_{x_{t-1}} \frac{p_{\mathbf{x}_{t} \mid \mathbf{x}_{t-1}}(x_{t} \mid x_{t-1}, \Omega) p_{\mathbf{x}_{t-1}}(x_{t-1} \mid \Omega)}{p_{\mathbf{x}_{t-1}}(x_{t} \mid \Omega)}\right] p_{\mathbf{x}_{t-1}}(x_{t} \mid \Omega)$$
$$\approx \frac{1}{Z_{t}} \underbrace{\psi_{t;\theta_{t}}\left(x_{t}, p_{\mathbf{x}_{t-1}}(\cdot \mid \Omega), \Omega\right)}_{\text{Exponentiated residual}} p_{\mathbf{x}_{t-1}}(x_{t} \mid \Omega)$$

